3,818 research outputs found

    Theory and phenomenology of non-global logarithms

    Full text link
    We discuss the theoretical treatment of non-global observables, those quantities that are sensitive only to radiation in a restricted region of phase space, and describe how large `non-global' logarithms arise when we veto the energy flowing into the restricted region. The phenomenological impact of non-global logarithms is then discussed, drawing on examples from event shapes in DIS and energy-flow observables in 2-jet systems. We then describe techniques to reduce the numerical importance of non-global logarithms, looking at clustering algorithms in energy flow observables and the study of associated distribution of multiple observables.Comment: Based on talks presented at the XXXVIIIth Rencontres de Moriond 'QCD and high-energy hadronic interactions', 8 page

    Achievable Qubit Rates for Quantum Information Wires

    Full text link
    Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N^(-1/3) qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modelled via the t-J and Hubbard models

    On the dynamic tensile strength of Zirconium

    Get PDF
    Despite its fundamental nature, the process of dynamic tensile failure (spall) is poorly understood. Spall initiation via cracks, voids, etc, before subsequent coalesce, is known to be highly microstructure-dependant. In particular, the availability of slip planes and other methods of plastic deformation controls the onset (or lack thereof) of spall. While studies have been undertaken into the spall response of BCC and FCC materials, less attention has paid to the spall response of highly anisotropic HCP materials. Here the dynamic behaviour of zirconium is investigated via plate-impact experiments, with the aim of building on an ongoing in-house body of work investigating these highly complex materials. In particular, in this paper the effect of impact stress on spall in a commercially sourced Zr rod is considered, with apparent strain-rate softening highlighted

    SIC~POVMs and Clifford groups in prime dimensions

    Full text link
    We show that in prime dimensions not equal to three, each group covariant symmetric informationally complete positive operator valued measure (SIC~POVM) is covariant with respect to a unique Heisenberg--Weyl (HW) group. Moreover, the symmetry group of the SIC~POVM is a subgroup of the Clifford group. Hence, two SIC~POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension three, each group covariant SIC~POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC~POVM is a subgroup of at least one of the Clifford groups of these HW groups respectively. There may exist two or three orbits of equivalent SIC~POVMs for each group covariant SIC~POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC~POVMs in dimension three, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC~POVMs by regrouping of the fiducial vectors from different SIC~POVMs which may or may not be on the same orbit of the extended Clifford group.Comment: 30 pages, 1 figure, section 4 revised and extended, published in J. Phys. A: Math. Theor. 43, 305305 (2010

    Joint measurements via quantum cloning

    Get PDF
    We explore the possibility of achieving optimal joint measurements of noncommuting observables on a single quantum system by performing conventional measurements of commuting self adjoint operators on optimal clones of the original quantum system. We consider the case of both finite dimensional and infinite dimensional Hilbert spaces. In the former we study the joint measurement of three orthogonal components of a spin 1/2, in the latter we consider the case of the joint measurements of any pair of noncommuting quadratures of one mode of the electromagnetic field. We show that universally covariant cloning is not ideal for joint measurements, and a suitable non universally covariant cloning is needed.Comment: 8 page

    Palaeoecological study of South Milton Ley, South Devon

    Get PDF
    1. Attend South Milton Ley and obtain 6 sediment cores from 3 different areas of the ley to investigate the impact of discharges from the sewage treatment works (STW). 2. From each of the 3 locations, extrude one master core at appropriate intervals and describe its stratigraphy. 3. From each of the 3 locations, measure the dry weight and organic matter content of selected levels of the master core. 4. Date the master core from each of the 3 locations to provide a chronology of the ley sediments using radiometric dating methods and/or spheroidal carbonaceous particles (SCPs). 5. Analyse the diatom assemblages in five to ten samples from selected depths of each master core. 6. Apply a diatom-phosphorus transfer function to the diatom assemblages of each master core to reconstruct total phosphorus concentrations and in turn determine the nutrient loading history of the ley. 7. Produce a summary report of the findings

    Long quantum channels for high-quality entanglement transfer

    Full text link
    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are coupled to the chain by an exchange interaction j0j_0 comparable with the intrachain exchange. Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j0opt(N)j_0^{opt}(N), where NN is the channel length. We show that j0opt(N)j_0^{opt}(N) scales as N1/6N^{-1/6} for large NN and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, the average quantum-state transmission fidelity exceeds 90% for any chain length. We emphasize that, taking the reverse point of view, should j0j_0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value.Comment: 12 pages, 9 figure

    From SICs and MUBs to Eddington

    Full text link
    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.Comment: 12 pages; from the Festschrift for Tony Sudber

    Increased Dust Deposition in New Zealand Related to Twentieth Century Australian Land Use

    Get PDF
    Mineral aerosols (dust) generated in the dryland regions of Australia have the potential to reach New Zealand through atmospheric transport. Although a large portion of dust in New Zealand originates in Australia, little is known about how dust deposition has varied over time in New Zealand or what may have caused this variation. We used geochemical dust proxies to examine the recent history of dust deposition to two alpine lakes in Kahurangi National Park, South Island, New Zealand. Geochemical indicators suggest that dust deposition began to increase around 1900, with the greatest deposition rates occurring from ~1920 to ~1990. In subsequent decades, dust deposition rates to New Zealand lakes appear to have declined. This rise and fall of dust deposition recorded in New Zealand lakes is consistent with dust records from the Antarctic Ice Sheet, Eastern Australia, and incidents of low visibility due to dust events recorded at Australian climate stations. The dust deposition rate over time also follows the temporal pattern of land use in south and central Australia over the time scale of the twentieth century suggesting a causal linkage. It is possible, and perhaps likely, that drought cycles also affected both emissions and transport pathways but over shorter time periods this was difficult to discern at the temporal resolution of these lake sediment cores. The increase in dust deposition to the high‐elevation regions of New Zealand likely has implications for the biogeochemistry of alpine lakes in the Tasman Mountains
    corecore